Solutions

Reasoning Ability

1. Ans. A.

Answer is option A
2. Ans. A.

P	R	O	A	C	T	I	V	E
A	C	E	I	O	P	R	T	V

Hence, option A is correct.
3. Ans. B.

One box is between P and Q.
Three boxes are between Q and S. Box V is immediately above box S .

V
S
-
-
-

Case 1
 Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

	-	-
V	\bar{V}	V
S	S	S
-	-	-
-	-	-
\bar{Q}	\bar{Q}	\bar{Q}
-		-
-		
1A	1B	1C

Case 2 diagram:

-			
-			-
-		$\overline{-}$	-
Q	Q	\bar{Q}	Q
-	-	-	-
$\overline{\mathrm{V}}$	$\overline{\mathrm{V}}$	$\overline{\mathrm{V}}$	$\overline{\mathrm{V}}$
S	S	S	S
	-	-	-
	-	-	
	-		
2A	2B	2C	2D

Take Case 1:

One box is kept between V and U. Box U is below box V . 3 boxes are kept between R and P. Box R is above P.

	R	R
V	V	V
S	S	S
U	U	U
R	P	P
\bar{Q}	\bar{Q}	\bar{Q}
\bar{P}		-
1A	1B	1C

There are as many boxes between R and W as W and S . But no diagram is follow this condition so all cases 1 gets rejected.
Take case 2:
One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case $2 A$ already gets rejected.

		R
Q	-	-
-	Q	Q
R	-	-
V	R	P
S	V	V
U	U	S
P	P	U
-		
2B	2C	2D

There are as many boxes between R and W as W and S. Only case 2D satisfy this condition. Here is the final arrangement:

R
T
Q
W
P
V
S
U
4. Ans. A.

Box R is at the top position.
Three boxes are between Q and S . Box V is immediately above box S.

Case 1

Case 2
Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

	-	-
V	\bar{V}	V
S	S	S
-	-	-
-	-	-
\bar{Q}	\bar{Q}	\bar{Q}
-		-
-		
$1 A$	$1 B$	$1 C$

Case 2 diagram:

-			
-			-
-		$\overline{-}$	-
Q	Q	\bar{Q}	Q
-	-	-	-
\bar{V}	\bar{V}	\bar{V}	\bar{V}
S	S	S	S
	-	-	-
	-	-	
2A	2B	2C	2D

Take Case 1:
One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V	V	V
S	S	S
U	U	U
R	P	P
\bar{Q}	\bar{Q}	\bar{Q}
\bar{P}		-
$1 A$	$1 B$	$1 C$

There are as many boxes between R and W as W and S . But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

One box is kept between V and U. Box U is below box V . 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		R
Q	-	-
-	Q	Q
R	-	-
V	R	P
S	S	V
U	U	S
P	P	U
-		
2B	2C	2D

There are as many boxes between R and W as W and S. Only case 2D satisfy this condition.

Here is the final arrangement:

R

T

Q
W
P
V
S
U
5. Ans. B.
S is at the $2^{\text {nd }}$ last position.
Three boxes are between Q and S . Box V is immediately above box S .

V	Q
S	-
-	\bar{V}
-	S

Case 1
 Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

	-	-
V	\bar{V}	V
S	S	S
-	-	-
-	-	-
\bar{Q}	\bar{Q}	\bar{Q}
-		-
-		
1A	1B	$\mathbf{1 C}$
Case $\mathbf{2}$		

2A 2B ${ }^{2 \mathrm{~B}} \mathrm{Take}^{2 \mathrm{Case} 1:}$
One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V	V	V
S	S	S
U	U	U
R	P	P
\bar{Q}	\bar{Q}	\bar{Q}
\bar{P}		-
1A	$1 B$	$1 C$

There are as many boxes between R and W as W and S . But no diagram is follow this condition so all cases 1 gets rejected.
Take case 2:
One box is kept between V and U. Box U is below box V . 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		R
Q	-	-
-	Q	Q
R	-	-
V	R	P
S	S	V
U	U	U
P	P	
-		
2B	2 C	2 D

There are as many boxes between R and W as

W and S. Only case 2D satisfy this condition. Here is the final arrangement:
R
T
Q
W
P
V
S
U
Last but one position - 2nd from the bottom. So, that box is S .
6. Ans. D.

Box T is above box W.
Three boxes are between Q and S . Box V is immediately above box S.

Case 1

Case 2
Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

	-	-
V	\bar{V}	V
S	S	S
-	-	-
-	-	-
\bar{Q}	\bar{Q}	\bar{Q}
-		-
-		$1 C$
1A	1B	1C

Case 2 diagram:

-			
-			-
-		-	-
Q	Q	\bar{Q}	Q
-	-	-	-
\bar{V}	\bar{V}	\bar{V}	\bar{V}
S	S	S	S
	-	-	-
	-	-	
	-		
2A	2B	2C	2D

Take Case 1:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V	V	V
S	S	S
U	U	U
R	P	P
\bar{Q}	\bar{Q}	\bar{Q}
\bar{P}		-

1A
1B
1C

There are as many boxes between R and W as W and S . But no diagram is follow this condition so all cases 1 gets rejected.
Take case 2:
One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		R
Q	-	-
-	Q	Q
R	-	-
V	R	P
S	V	V
U	U	S
P	P	U
-		
2B	$2 C$	$2 D$

There are as many boxes between R and W as W and S. Only case 2D satisfy this condition. Here is the final arrangement:
R
T
Q
W
P
V
S
U
7. Ans. A.

No box is below U.
Three boxes are between Q and S . Box V is immediately above box S.

Case 1

Case 2
Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

	-	-
V	\bar{V}	\bar{V}
S	S	S
-	-	-
-	-	-
\bar{Q}	\bar{Q}	\bar{Q}
-		-
-		
1A	1B	1C

Case 2 diagram:

-			
-			-
-		$\overline{-}$	-
Q	Q	Q	Q
-	-	-	-
\bar{v}	\bar{v}	$\overline{\mathrm{~V}}$	$\overline{\mathrm{~V}}$
S	S	S	S
	-	-	-
	-	-	
	-		
2A	2B	2C	2D

Take Case 1:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V	V	V
S	S	S
U	U	U
R	P	P
\bar{Q}	\bar{Q}	\bar{Q}
\bar{P}		-
$1 A$	$1 B$	$1 C$

There are as many boxes between R and W as W and S . But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		R
Q	-	-
-	Q	Q
R	-	-
V	R	P
S	V	V
U	U	S
P	P	U
-		
2B	2C	2D

There are as many boxes between R and W as W and S. Only case 2D satisfy this condition.

Here is the final arrangement:
R
T
Q
W
P
V
S
U
8. Ans. C.

Either conclusion I or conclusion II is true

Explanation:

$\mathrm{A} \geq \mathrm{J}=\mathrm{N} ; \mathrm{H}>\mathrm{Y}>\mathrm{I}<\mathrm{S}=\mathrm{N}$
From the statements we have,
$\mathrm{A} \geq \mathrm{J}=\mathrm{N}$. So, $\mathrm{A} \geq \mathrm{N}$
Conclusions:
I. $A=N$
II. A > N

So, I and II are complementary
9. Ans. B.

Only conclusion II is true

Explanation:

$\mathrm{U}>\mathrm{J} \leq \mathrm{H}=\mathrm{S} ; \mathrm{T} \leq \mathrm{J}>\mathrm{F}$
From the statements we have,
$\mathrm{U}>\mathrm{J}>\mathrm{F}$. So, U > F .
Also, U > J \geq T. So, U > T
Conclusions:
I. $\mathrm{F} \leq \mathrm{U}$: it is FALSE
II. $\mathrm{U}>\mathrm{T}$: it is TRUE
10. Ans. A.

Only conclusion I is true.

Explanation:

$\mathrm{Y}>\mathrm{U} \leq \mathrm{H}=\mathrm{Q} ; \mathrm{R} \leq \mathrm{U}>\mathrm{M}$
From the statements we have,
$\mathrm{R} \leq \mathrm{U} \leq \mathrm{H}=\mathrm{Q}$. So, $\mathrm{R} \leq \mathrm{Q}$
Also, $\mathrm{M}<\mathrm{U} \leq \mathrm{H}=\mathrm{Q}$. So, $\mathrm{Q}>\mathrm{M}$
Conclusions:
I. $\mathrm{R} \leq \mathrm{Q}$: It is TRUE
II. $\mathrm{Q} \geq \mathrm{M}$: It is FALSE
11. Ans. D.

Neither conclusion I nor conclusion II is true

Explanation:

$H<S=L \geq F>G \leq Q$
From the statements we have,
$\mathrm{H}<\mathrm{L}>\mathrm{G}$. So, relation between H and G cannot be established.
Also, $L>G \leq W$. So, relation between L and W cannot be established.

Conclusions:
I. $\mathrm{H}>\mathrm{G}$: It is FALSE
II. $\mathrm{W} \leq \mathrm{L}$: It is FALSE
12. Ans. B.

Statements: $\mathrm{T}>\mathrm{U} \geq \mathrm{V} \geq \mathrm{W} ; \mathrm{X}<\mathrm{Y}=\mathrm{W}>\mathrm{Z}$
After combining both statements:
$\mathrm{T}>\mathrm{U} \geq \mathrm{V} \geq \mathrm{W}=\mathrm{Y}>\mathrm{X} ; \mathrm{W}=\mathrm{Y}>\mathrm{Z}$
Conclusions: I. $Z>U$ (not true) $\{W>Z \& W$ $\Rightarrow \underline{U}>\mathrm{Z}\}$
II. $\mathrm{W}<\mathrm{T}$ (true) $\{\mathrm{U}>\mathrm{W} \& \mathrm{~T}>\mathrm{U} \Rightarrow \mathrm{T}>\mathrm{W}\}$ Therefore only conclusion II is true.
13. Ans. B.

Given number - 8367284
As per the question-2' is subtracted from each even digit and ' 1 ' is added to each odd digit
$8-2=6$
$3+1=4$
$6-2=4$
$7+1=8$
$2-2=0$
8-2 = 6
$4-2=2$
New number formed - is 6448062
Only two digits appear twice in the new
number thus formed which is 6 \& 4 .
14. Ans. D.

Before rearranging as descending
order:935126
After rearranging as descending order: 965321
9,5 and 2 are on the same place as before.
So, there are 3 digits
15. Ans. E.

Meaningful words = NEST, SENT, NETS, TENS
16. Ans. B.

The code for 'mind' is - dh
The codes are given below -
Intellectual - ga
bright - pa/la
and - la/pa
mind - dh
students - mt
Fresh - ni
Clear-mi
thoughts -pz/ma
in - ma/pz
17. Ans. C.

The code for 'bright and clear' - la pa mi
The codes are given below -
Intellectual - ga
bright - pa/la
and - la/pa
mind - dh
students - mt
Fresh - ni
Clear-mi
thoughts -pz/ma
in - ma/pz
18. Ans. A.

The code 'ni' stand for fresh
The codes are given below -
Intellectual - ga
bright - pa/la
and - la/pa
mind - dh
students - mt
Fresh - ni
Clear - mi
thoughts -pz/ma
in - ma/pz
19. Ans. D.

The code for 'thoughts' is either - pz/ma
The codes are given below -
Intellectual - ga
bright - pa/la
and - la/pa
mind - dh
students - mt
Fresh - ni
Clear-mi
thoughts -pz/ma
in - ma/pz
20. Ans. A.

The code 'ga' stand for - Intellectual
The codes are given below -
Intellectual - ga
bright - pa/la
and - la/pa
mind - dh
students - mt
Fresh - ni
Clear-mi
thoughts -pz/ma
in - ma/pz
21. Ans. B.

R bought car in August.

Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought
car either in June or November.
Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	T
November(30)	
December(31)	

Case 2: If U bought car in November-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P . Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

22. Ans. D.

All the persons bought the car in a month which was having 31 days except P
Case 1: If U bought car in June-
U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons
bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	T
November(30)	
December(31)	

Case 2: If U bought car in November-
U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.
Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

23. Ans. A.

Only one person bought car between P and R.

Case 1: If U bought car in June-
U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	T
November(30)	
December(31)	

Case 2: If U bought car in November-
U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

24. Ans. E.

None is correct.

Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	T
November(30)	
December(31)	

Case 2: If U bought car in November-
U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

25. Ans. B.

2 persons bought car after Q .

Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	T
November(30)	
December(31)	

Case 2: If U bought car in November-
U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

26. Ans. D.

Conclusion I is false
Conclusion II is false
27. Ans. D.

if neither Conclusion I nor II follows.
28. Ans. E.

29. Ans. A.

Only Conclusion I follows
30. Ans. E.

Some intelligent are doctor. So, All intelligent being doctors is a possibility.
31. Ans. C.

According to first clue, P is either facing inside or outside
Scenario I: P is facing outside

U sits immediate left of R which is not possible in this scenario.

Scenario II: P is facing inside

Using the other clues, we get

32. Ans. D.

According to first clue, P is either facing inside or outside
Scenario I: P is facing outside
(Out)

U sits immediate left of R which is not possible in this scenario.
Scenario II: P is facing inside

Using the other clues, we get

33. Ans. D.

According to first clue, P is either facing inside or outside
Scenario I: P is facing outside

U sits immediate left of R which is not possible in this scenario.
Scenario II: P is facing inside

Using the other clues, we get

34. Ans. B.

According to first clue, P is either facing inside or outside
Scenario I: P is facing outside

P(Out)
U sits immediate left of R which is not possible in this scenario.
Scenario II: P is facing inside

Using the other clues, we get

35. Ans. B.

According to first clue, P is either facing inside or outside
Scenario I: P is facing outside

U sits immediate left of R which is not possible in this scenario.
Scenario II: P is facing inside

Using the other clues, we get

36. Ans. C.

All the persons are at the end except B.

- Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N			M	
Row 2	D					

Case 1B:

Row 1		N			M	
Row 2			D			

Case 2A:

Row 1		M			N	
Row 2						D

Case 2B:

Row 1		M			N	
Row 2				D		

Take case 1A:
O is $2^{\text {nd }}$ to the right of Q . O is not neighbor of N . The one who is facing O is $2^{\text {nd }}$ to the left of F . More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		O	M	Q
Row 2	D					F

Take case 1B:
O is $2^{\text {nd }}$ to the right of Q . O is not neighbor of N . The one who is facing O is $2^{\text {nd }}$ to the left of F . More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		O	M	Q
Row 2	E		D			F

Take case 2A:
O is $2^{\text {nd }}$ to the right of Q . O is not neighbor of N . The one who is facing O is $2^{\text {nd }}$ to the left of F . More than 2 people sit between E and the one who is facing M it means 3 people are between them but from this
cannot be possible so this case gets rejected.

Row 1	O	M	Q		N	
Row 2			F			D

Take case 2B:
O is $2^{\text {nd }}$ to the right of Q . O is not neighbor of N . The one who is facing O is $2^{\text {nd }}$ to the left of F . More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	O	M	Q	P	N	R
Row 2	C	A	F	D	B	E

37. Ans. D.
D is facing P.

- Two persons are sitting between M and N . Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N			M	
Row 2	D					

Case 1B:

Row 1		N			M	
Row 2			D			

Case 2A:

Row 1		M			N	
Row 2						D

Case 2B:

Row 1		M			N	
Row 2				D		

Take case 1A:
O is $2^{\text {nd }}$ to the right of Q. O is not neighbor of N. The one who is facing O is $2^{\text {nd }}$ to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		O	M	Q
Row 2	D					F

Take case 1B:

O is $2^{\text {nd }}$ to the right of Q . O is not neighbor of N . The one who is facing O is $2^{\text {nd }}$ to the left of F . More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		O	M	Q
Row 2	E		D			F

Take case 2A:

O is $2^{\text {nd }}$ to the right of Q. O is not neighbor of N. The one who is facing O is $2^{\text {nd }}$ to the left of F. More than

2 people sit between E and the one who is facing M it means 3 people are between them but from this cannot be possible so this case gets rejected.

Row 1	O	M	Q		N	
Row 2			F			D

Take case 2B:
O is $2^{\text {nd }}$ to the right of Q. O is not neighbor of N. The one who is facing O is $2^{\text {nd }}$ to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	O	M	Q	P	N	R
Row 2	C	A	F	D	B	E

38. Ans. D.

3 persons sit between O and N .

- Two persons are sitting between M and N . Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N			M	
Row 2	D					

Case 1B:

Row 1		N			M	
Row 2			D			

Case 2A:

Row 1		M			N	
Row 2						D

Case 2B:

Row 1		M			N	
Row 2				D		

Take case 1A:
O is $2^{\text {nd }}$ to the right of Q. O is not neighbor of N. The one who is facing O is $2^{\text {nd }}$ to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		O	M	Q
Row 2	D					F

Take case 1B:

O is $2^{\text {nd }}$ to the right of Q . O is not neighbor of N . The one who is facing O is $2^{\text {nd }}$ to the left of F . More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		O	M	Q
Row 2	E		D			F

Take case 2A:

O is $2^{\text {nd }}$ to the right of Q. O is not neighbor of N. The one who is facing O is $2^{\text {nd }}$ to the left of F. More than

2 people sit between E and the one who is facing M it means 3 people are between them but from this cannot be possible so this case gets rejected.

Row 1	O	M	Q		N	
Row 2			F			D

Take case 2B:
O is $2^{\text {nd }}$ to the right of Q. O is not neighbor of N. The one who is facing O is $2^{\text {nd }}$ to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	O	M	Q	P	N	R
Row 2	C	A	F	D	B	E

39. Ans. B.

R is $3^{\text {rd }}$ to the left of Q .

- Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N			M	
Row 2	D					

Case 1B:

Row 1		N			M	
Row 2			D			

Case 2A:

Row 1		M			N	
Row 2						D

Case 2B:

Row 1		M			N	
Row 2				D		

Take case 1A:
O is $2^{\text {nd }}$ to the right of Q. O is not neighbor of N. The one who is facing O is $2^{\text {nd }}$ to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		O	M	Q
Row 2	D					F

Take case 1B:

O is $2^{\text {nd }}$ to the right of Q . O is not neighbor of N . The one who is facing O is $2^{\text {nd }}$ to the left of F . More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		O	M	Q
Row 2	E		D			F

Take case 2A:

O is $2^{\text {nd }}$ to the right of Q. O is not neighbor of N. The one who is facing O is $2^{\text {nd }}$ to the left of F. More than

2 people sit between E and the one who is facing M it means 3 people are between them but from this cannot be possible so this case gets rejected.

Row 1	O	M	Q		N	
Row 2			F			D

Take case 2B:
O is $2^{\text {nd }}$ to the right of Q. O is not neighbor of N. The one who is facing O is $2^{\text {nd }}$ to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	O	M	Q	P	N	R
Row 2	C	A	F	D	B	E

40. Ans. C.
A and M are facing each other.

- Two persons are sitting between M and N . Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N			M	
Row 2	D					

Case 1B:

Row 1		N			M	
Row 2			D			

Case 2A:

Row 1		M			N	
Row 2						D

Case 2B:

Row 1		M			N	
Row 2				D		

Take case 1A:
O is $2^{\text {nd }}$ to the right of Q. O is not neighbor of N. The one who is facing O is $2^{\text {nd }}$ to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		O	M	Q
Row 2	D					F

Take case 1B:

O is $2^{\text {nd }}$ to the right of Q . O is not neighbor of N . The one who is facing O is $2^{\text {nd }}$ to the left of F . More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		O	M	Q
Row 2	E		D			F

Take case 2A:

O is $2^{\text {nd }}$ to the right of Q. O is not neighbor of N. The one who is facing O is $2^{\text {nd }}$ to the left of F. More than

2 people sit between E and the one who is facing M it means 3 people are between them but from this cannot be possible so this case gets rejected.

Row 1	O	M	Q		N	
Row 2			F			D

Take case 2B:
O is $2^{\text {nd }}$ to the right of Q . O is not neighbor of N . The one who is facing O is $2^{\text {nd }}$ to the left of F . More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	O	M	Q	P	N	R
Row 2	C	A	F	D	B	E

Quantitative Aptitude Solutions

1. Ans. B.

$$
\begin{aligned}
& 131-64=67 \\
& 67-32=35 \\
& 35-16=19 \\
& 19-8=11 \\
& 11-4=7
\end{aligned}
$$

2. Ans. C.
$25+3=28$
$28-6=22$
$22+9=31$
$31-12=19$
$19+15=34$
3. Ans. A.
$7 \times 0.5+1=4.5$
$4.5 \times 1+1.5=6$
$6 \times 1.5+2=11$
$11 \times 2+2.5=24.5$
4. Ans. B.
$1+3=4$
$4+5=9$
$9+9=18$
$18+17=35$
Again we have to check here -
$3+2=5$
$5+4=9$
$9+8=17$
$17+16=33$
We will add 33 in $35=68$
5. Ans. D.
$3.5 \times 2-3=4$
$4 \times 3-4=8$
$8 \times 4-5=27$
$27 \times 5-6=129$
$129 \times 6-7=767$
6. Ans. E.
$2 x^{2}+11 x+14=0$
$2 x^{2}+4 x+7 x+14=0$
$2 x(x+2)+7(x+2)=0$
$(x+2)(2 x+7)=0$
i.e. $x=-2$ or $-7 / 2$
$2 y^{2}+13 y+21=0$
$2 y^{2}+6 y+7 y+21=0$
$2 y(y+3)+7(y+3)=0$
$(2 y+7)(y+3)=0$
i.e. $y=-3$ or $-7 / 2$

Thus, Relationship cannot be established.
7. Ans. B.
$x^{2}-9 x+20=0$
$x^{2}-5 x-4 x-20=0$
$(x-5)(x-4)=0$
i.e. $x=4$ or 5
$y^{2}=16$
$y=(16) 1 / 2$
$y=4$ or -4
Thus, $x>=y$
8. Ans. C.
$x^{2}-7 x+12=0$
$x^{2}-4 x-3 x+12=0$
$x(x-4)-3(x-4)=0$
i.e. $x=3$ or 4
$y^{2}-11 y+30=0$
$y^{2}-5 y-6 y+30=0$
$y(y-5)-6(y-5)=0$
i.e. $y=5$ or 6

Thus, $\mathrm{y}>\mathrm{x}$
9. Ans. C.
$x^{2}-8 x+15=0$
$x^{2}-5 x-3 x+15=0$
$x(x-5)-3(x-5)=0$
i.e. $x=5$ or 3
$y^{2}-12 y+36=0$
$y^{2}-6 y-6 y+36=0$
$y(y-6)-6(y-6)=0$
i.e. $y=6$

Thus, $y>x$
10. Ans. E.
$2 x^{2}+9 x+7=0$
$2 x^{2}+7 x+2 x+7=0$
$x(2 x+7)+1(2 x+7)=0$
i.e. $x=-1$ or $-7 / 2$
$y^{2}+4 y+4=0$
$y^{2}+2 y+2 y+4=0$
$y(y+2)+2(y+2)=0$
i.e. $y=-2$

Thus, Relationship cannot be established between X \& Y.
11. Ans. A.

Required Average $=$
$(3750+3000+2500+3750+3500) / 5=3300$
12. Ans. B.

Total number of students (males and females together) in University $\mathrm{P}=(3000+3750)=$ 6750
Total number of students (males and females
together) in University $R=2500+4250=$
6750
Ratio = 1:1
13. Ans. B.

Required ratio $=(3750+3000):(4250+$ 2750) $=27: 28$
14. Ans. D.

Required percentage $=$
$[4000 /(3750+3000+2500+3750+3500)] * 100$
$=(4000 / 16500) * 100=24 \%$ (approx)
15. Ans. C.

Required number $=2750+50 \%$ of $2750+$ $3500=7625$
16. Ans. A.

Number of teachers in physics subject $=1800$
$\times \frac{17}{100}$
$=306$
Number of female teachers in physics $=306 \times$ $\frac{2}{9}$
$=68$
Number of male teachers in physics = 306 68
$=238$

Number of teachers in chemistry subject $=$
$1800 \times \frac{23}{100}$
$=414$

$$
238
$$

Required percentage $=414$
= 57 \% (approx).
17. Ans. B.

Number of teachers in Chemistry subject $=$ $1800 \times 23 \%=414$
Number of teachers in English subject $=1800$
$\times 27 \%=486$
Number of teachers in Biology subject $=1800$
$\times 12 \%=216$
Required number $=414+486+216=1116$
18. Ans. B.

Total number of teachers English and Physics
$=486+306=792$
Total number of teachers Mathematics and
Biology $=234+216=450$
Required difference $=792-450=342$
19. Ans. E.

Number of teachers in Mathematics subject=
$1800 \times 13 \%=234$
Number of teachers in Hindi subject $=$
$1800 \times 8 \%=144$
Required ratio $=234: 114$
= $13: 8$
20. Ans. C.

Number of increased Mathematics teachers $=$ $234+234 \times 50 \%=351$
Number of decreased Hindi teachers $=144$ $144 \times 25 \%=108$
Required total number $=351+108$
$=459$
21. Ans. A.

Average number of students, who appeared for Physics from the year, 2011 to $2015=$ $(650+250+350+600+350) / 5=440$
22. Ans. D.

Total number of students who appeared for
Physics from 2013 to $2015=(350+600+$ 350) = 1300

Total number of students, who appeared for
Chemistry from 2011 to $2013=(800+630+$ 550) = 1980

Required ratio $=1300: 1980=65: 99$
23. Ans. B.

Students who did not pass in Physics in the year $2011=70 / 100 * 650=455$
Students who did not pass in Physics in the
year $2015=30 / 100 * 350=105$
Average $=(455+105) / 2=280$
24. Ans. D.

Total number of students, who passed in Chemistry in $2011=50 / 100 * 800=400$
Total number of students who did not pass in
Physics in $2015=30 / 100 * 350=105$
Difference $=400-105=295$
25. Ans. B.

Total number of students who did not pass
Physics in $2013=50 / 100 * 350=175$
Total number of students who did not pass
Chemistry in $2013=80 / 100 * 550=440$
Percentage $=175 / 440 * 100=39.77 \%=$ 40\%
26. Ans. A.

Take nearest values
$21.003 \times 39.998-209.91=126 \times$?
$630=126 \times$?
? = 5 (approx)
27. Ans. C.
$\left(\frac{47}{100} \times 1442-\frac{36}{100} \times 1412\right) \div 63$
$=(677.74-508.32) \div 63=169.42 / 63=$
2.689 = 3 (Approx)

Hence option C is correct
28. Ans. D.
$?=2418.065+88 \div 14.2 \times 6$
$?=2418.065+88 \times \frac{1}{14.2} \times 6$
? $=2418.065+6.197 \times 6$
? $=2418.065+37.18$
? = 2455.25
? = 2455 (Approx.)
29. Ans. E.
$1200 \div 15 \times 20+400=80 \times 20+400$
$=1600+400=2000$ (Approx)
Hence option E is correct
30. Ans. E.
$?=726 \times \frac{15.2}{100} \times 643 \times \frac{12.8}{100}$
$=110.352 \times 82.304$
$=9082.41$
≈ 9082 (approx)
31. Ans. A.

Third Number $=(128 \times 5)-(118 \times 2)-(126$
$\times 2$) $=152$
32. Ans. A.

Let present age of Anita = ' x ' years
And present age of Bablu= ' y^{\prime} years
Now, $\frac{\frac{x-4}{2}}{4(y-4)}=5 / 12$
$12 x-48=40 y-160$
$3 x-10 y+28=0$
And,
$\frac{1}{2}(x+8)=(y+8)-2$
$x+8=2 y+12$
$x-2 y=4$
Now, from eqn. (i) \& (ii)
Bablu present age, $Y=10$ years
33. Ans. B.

Let 100 (CP)
80 (SP) 110 (SP)
Diff. 30
30 units $\rightarrow 24$
1 unit $\rightarrow \frac{24}{30}$
100 units $\rightarrow{ }^{\frac{24}{30} \times 100}=$ Rs. 80
$\mathrm{CP}=$ Rs. 80
34. Ans. A.

A started a business with investing Rs. 8000
and after some months, B joined with
investing Rs. 5000.
Equivalent capital of A
$=$ Rs. 8000×12
= Rs. 96000
Let B joined after x months.
So, equivalent capital of B
$=$ Rs. $5000 \times(12-x)$
= Rs. 60000 - 5000x
Total profit after one year = Rs. 4250
Share of $A=$ Rs. 3000. Then, the share of $B=$
Rs. $4250-3000=$ Rs. 1250
So, the ratio of their share;
$\mathrm{A}: \mathrm{B}=3000: 1250=12: 5$
Now, we can write,
$96000 /(60000-5000 x)=12 / 5$
$\Rightarrow 60000-5000 x=96000 \times(5 / 12)$
$\Rightarrow 60000-5000 x=8000 \times 5$
$\Rightarrow 5000 x=60000-40000$
$\Rightarrow x=20000 / 5000 \Rightarrow x=4$
\therefore After 4 months, B joined in the business.
35. Ans. D.

Let the length of train P and Q are 5a and $4 a$. speed of train $P=5 a / 6$
therefore,
$(5 a / 6+21) * 4=5 a / 3+4 a$
$-5 a / 3+4 a=84$
$\mathrm{a}=36$
speed of train $P=36 * 5 / 6=30 \mathrm{~m} / \mathrm{s}$
36. Ans. D.

Total no of balls $=8+7+6=21$
Let, E be the event where the ball can be selected which is neither yellow nor black Number of events where the ball can be selected which is neither yellow nor black $=7$ $P(E)=7 / 21=1 / 3$
37. Ans. D.

Ratio of days of B and $C=2: 1$
$\frac{1}{A}+\frac{1}{B}=\frac{1}{60} \ldots \ldots$ 1)
$\left.\frac{1}{A}+\frac{1}{C}=\frac{1}{45} \ldots \ldots 2\right)$
$\left.\frac{1}{A}+\frac{2}{B}=\frac{1}{45} \ldots .3\right)$

1) and 2)
$\frac{1}{B}=\frac{1}{180} \Rightarrow B=180$ days
From equation 1) $\mathrm{A}=90$ days, and $\mathrm{C}=90$ days
One day work of A, B and C
$=\frac{1}{90}+\frac{1}{90}+\frac{1}{180}=\frac{2+2+1}{180}=\frac{1}{36}$
Days $=36$ days.
38. Ans. B.

First and second varieties of pulses are mixed in equal proportions
\therefore Their average price $=$ INR $(32+45) / 2=$ INR $38.5 / \mathrm{kg}$
Let the price of third variety pulse be INR x / kg
The mixture is formed by mixing two varieties becomes one at INR $38.5 / \mathrm{kg}$
By the rule of allegation:

Cost of 1 kg of $1^{\text {st }}+2^{\text {nd }}$ variety INR 38.5

Cost of 1 kg of $3^{\text {rd }}$ variety INR X

Mean price INR 88

$$
(x-88)
$$

$\Rightarrow x-88=49.50$
$\Rightarrow x=137.50$
Hence, the price of the third variety per kg will be INR $137.50 / \mathrm{kg}$
39. Ans. D.

The time required to travel a certain distance upstream is five times than that of
downstream for the same distance.
Let the speed of the boat in upstream be x $\mathrm{km} / \mathrm{hr}$. and in downstream be $5 \times \mathrm{km} / \mathrm{hr}$.
We know that if the speed of the downstream is $x \mathrm{~km} / \mathrm{hr}$ and the speed of the upstream is y $\mathrm{km} / \mathrm{hr}$, then the speed in still water $=1 / 2 \times$ $(x+y) \mathrm{km} / \mathrm{hr}$.
So, the speed of the boat in still water
$=1 / 2 \times(x+5 x) \mathrm{km} / \mathrm{hr}$.
$=1 / 2 \times 6 \times \mathrm{km} / \mathrm{hr}$.
$=3 \times \mathrm{km} / \mathrm{hr}$.
Given, the speed of a boat in still water is
(27/4) km/hr.
So, we can write now,
$3 x=27 / 4$
$\Rightarrow x=9 / 4$
So, the speed of the boat in upstream $=9 / 4$
$\mathrm{km} / \mathrm{hr}$.
And the speed of the boat in downstream $=5$ $\times(9 / 4) \mathrm{km} / \mathrm{hr} .=45 / 4 \mathrm{~km} / \mathrm{hr}$.
Again, we know that if the speed of the downstream is $x \mathrm{~km} / \mathrm{hr}$ and the speed of the upstream is $y \mathrm{~km} / \mathrm{hr}$, then the speed of the stream $=1 / 2 \times(x-y) k m / h r$.
\therefore The speed of the stream $=1 / 2 \times[(45 / 4)-$
(9/4)] km/hr.
$=1 / 2 \times 9 \mathrm{~km} / \mathrm{hr}$.
$=9 / 2 \mathrm{~km} / \mathrm{hr}$.
$=4.5 \mathrm{~km} / \mathrm{hr}$.
40. Ans. C.

Curved Surface Area of Cylinder $=2 \pi r h$
Total Surface Area of Cylinder $=2 \pi r(h+r)$
According to question, $2 \pi r h: 2 \pi r(h+r)=$ 3:5
i.e. $h /(h+r)=3 / 5$
i.e., $2 h=3 r-(a)$

Also, Curved surface area of the cylinder $=$ 1848 metre square
i.e. $2 \pi r h=1848$

From (a), $2 \pi(2 / 3 \mathrm{~h}) * \mathrm{~h}=1848$
On solving the above equation, $h=21 \mathrm{~m}$

