

Solutions

Reasoning Ability

Answer is option A

2. Ans. A.

P	R	0	Α	С	T	I	V	E
A	С	E	I	0	Р	R	Т	V

Hence, option A is correct.

3. Ans. B.

One box is between P and Q. Three boxes are between Q and S. Box V is immediately above box S.

V	0
S	Q
25 (S)	====
2 - 2 2 - 2	V
0	S

Case 1 Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

V	$\overline{\mathbf{v}}$	V
V S	V S	V S
=	-	200
-	iona	-
Q —	\overline{Q}	\overline{Q}
1000		
1A	1B	10
Case 2	diagram	

24	20	26	20
	1		
	-	200	
	_		_
S	S	S	S
v s	$\overline{\mathbf{v}}$	v s	v s
-	-	_	
Q	Q	Q	Q
			-
8-8			-
-			
_			

Take Case 1:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V	v	V
S	S	S
V S U	U	V S U P
R	S U P	P
Q —	\overline{Q}	\overline{Q}
P.		-
1A	1B	1 C

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		R
0	_	==7
	Q	Q
-	53 % 544	-
R	R	P
V S	V	V
	S	S
U	U	U
U P	P	
-		
2B	2C	2D

There are as many boxes between R and W as W and S. Only case 2D satisfy this condition.

Here is the final arrangement:

T

Ans. A. 4.

Box R is at the top position.

Three boxes are between Q and S. Box V is immediately above box S.

V S	Q
	=36
	V
0	S

Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

	_	22
V	$\overline{\mathbf{v}}$	v
V S	V S	V S
	22	200
-		-
\overline{Q}	\overline{Q}	\overline{Q}
_		_
0.000		
1A	1B	10
Case 2	diagram:	

_			
_			
S <u>—</u> 5			
Q	Q	Q	Q
-	-	-	
v s	$\overline{\mathbf{v}}$	$\overline{\mathbf{v}}$	$\overline{\mathbf{v}}$
S	S	S	S
	_		-
	-		

2€

2B Take Case 1:

2A

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

2D

	R	R
V S	V S U	R V S U P
S	S	S
U	U	U
	P	P
$\frac{R}{Q}$	\overline{Q}	\overline{Q}
P.		-
1A	1B	10

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

2B

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		R
Q	_	==0
_	Q	Q
	-	_
K	R	P
V	R V	V
R V S U P	S U P	P V S U
U	U	U
P	P	
-		

20

There are as many boxes between R and W as W and S. Only case 2D satisfy this condition.

ATTEMPT NOW

2D

Here is the final arrangement:

R Т

S

U

5. Ans. B.

S is at the 2^{nd} last position.

Three boxes are between Q and S. Box V is immediately above box S.

V	0
S S	Q
- TS	
	\overline{v}
0	S

Case 2 Case 1

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

	_	22
V	$\overline{\mathbf{v}}$	v
V S	V S	V S
		200
-	1	-
\overline{Q}	\overline{Q}	\overline{Q}
_		_
(200)		
1A	1B	10
Case 2	diagram	

_			
_			
_5			-
Q	Q	Q	Q
-	-	-	
v s	v s	v s	v s
S	S	S	S
	_		: <u> </u>
	-	-	
	1.		

2B 2D Take Case 1:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V	v	V
S	S	S
V S U	U	R V S U P
	V S U P	P
$\frac{R}{Q}$	\overline{Q}	\overline{Q}
P		

10 1A 1B

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

	, 5	R
Q	_	<u> </u>
_	Q	Q
D	5 3	
K	R	P
V	R V	V
R V S U P	S	S
U	U P	S
P	P	
-		

2B 2C 2D

There are as many boxes between R and W as

W and S. Only case 2D satisfy this condition.

Here is the final arrangement:

R

T

Q

W

P

V

S

Last but one position - 2nd from the bottom. So, that box is S.

6. Ans. D.

Box T is above box W.

Three boxes are between Q and S. Box V is immediately above box S.

S	Q
	-34
	-5
	V
<u>_</u>	S

Case 1 Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

V	V	V
S	S	S
-		200
-	100	-
\overline{Q}	\overline{Q}	\overline{Q}
-		_
1A	1B	10
Case 2	diagram:	

-			
_			
			(-)
Q	Q	Q	Q
***	-	-	
v s	$\overline{\mathbf{v}}$	$\overline{\mathbf{v}}$	$\overline{\mathbf{v}}$
S	S	S	S
	_		_
	-		
	//		

2A 2B 2C Take Case 1:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

2D

	R	R
V S	v	V
S	S	S
U	U	R V S U P
R	P	P
\overline{Q}	\overline{Q}	\overline{Q}
P		_

1R	10
	1B

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		R
Q	_	===
_	Q	Q
R	-	_
V	R V	P
V S	V	V
3	S	S
U P	S U P	U
P	Р	
2R	20	2D

There are as many boxes between R and W as W and S. Only case 2D satisfy this condition.

Here is the final arrangement:

R T Q W P V S

7. Ans. A.

No box is below U.

Three boxes are between Q and S. Box V is immediately above box S.

V	0
S	Q
	-
: <u></u> :	V
0	S

Case 1 Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

		222
V	$\overline{\mathbf{v}}$	v
V S	V S	S
-	22	200
-		-
\overline{Q}	\overline{Q}	\overline{Q}
-		_
T-100		
1A	1B	10
Case 2	diagram:	

_			
_			
\$_5			-
		_	
Q	Q	Q	Q
-	-	-	0.0
v s	\overline{v}	v s	v s
S	S	S	S
	_		
	-		
	1),		

20

Take Case 1:

2B

2A

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

2D

	R	R
V S	V	
S	V S U	S
U		V S U P
R	P	P
$\overline{\mathbf{Q}}$	\overline{Q}	\overline{Q}
P		
1A	1B	10

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		K
Q	_	550
-	Q	Q
R	_ P	P P
V S U P	R V	v
S	S	S
U	U P	U
P	P	
=		
2B	2C	2D

There are as many boxes between R and W as W and S. Only case 2D satisfy this condition.

Here is the final arrangement:

R

T

Q

W

P

V

S

8. Ans. C.

Either conclusion I or conclusion II is true

Explanation:

 $A \ge J = N$; H > Y > I < S = NFrom the statements we have, $A \ge J = N$. So, $A \ge N$

Conclusions:

I. A = N

II. A > N

So, I and II are complementary

9. Ans. B.

Only conclusion II is true

Explanation:

 $\overline{U > J \le H = S}; T \le J > F$

From the statements we have,

U > J > F. So, U > F.

Also, $U > J \ge T$. So, U > T

Conclusions:

I. $F \le U$: it is FALSE

II. U > T: it is TRUE

10. Ans. A.

Only conclusion I is true.

Explanation:

 $Y > U \le H = Q$; $R \le U > M$ From the statements we have,

 $R \le U \le H = Q$. So, $R \le Q$

Also, $M < U \le H = Q$. So, Q > M

Conclusions:

I. R ≤ Q: It is TRUE

II. $Q \ge M$: It is FALSE

11. Ans. D.

Neither conclusion I nor conclusion II is true

Explanation:

 $H < S = L \ge F > G \le Q$

From the statements we have,

H < L > G . So, relation between H and G

cannot be established.

Also, $L > G \le W$. So, relation between L and W cannot be established

W cannot be established.

Conclusions:

I. H > G: It is FALSE

II. W ≤ L: It is FALSE

12. Ans. B.

Statements: $T > U \ge V \ge W$; X < Y = W > Z

After combining both statements:

 $T > U \ge V \ge W=Y >X$; W = Y > Z

Conclusions: I. Z > U (not true) {W>Z & W

 $\Rightarrow U > Z$

II. W < T (true) $\{U > W \& T > U \Rightarrow T > W\}$

Therefore only conclusion II is true.

13. Ans. B.

Given number - 8367284

As per the question - 2' is subtracted from each even digit and '1' is added to each odd digit

8 - 2 = 6

3 + 1 = 4

6 - 2 = 4

7 + 1 = 8

2 - 2 = 0

8 - 2 = 6

4 - 2 = 2

New number formed - is 6448062

Only two digits appear twice in the new number thus formed which is 6 & 4.

14. Ans. D.

Before rearranging as descending

order:935126

After rearranging as descending

order: 965321

9, 5 and 2 are on the same place as before.

So, there are 3 digits

15. Ans. E.

1 2 3 4 5 6 7 8 9 10 11 5 P O N T A N E O U S

Meaningful words = NEST, SENT, NETS, TENS

16. Ans. B.

The code for 'mind' is - dh

The codes are given below -

Intellectual - ga

bright - pa/la

and - la/pa

FREE TEST

IBPS RRB OFFICER SCALE I COMBO EXAM

mind - dh

students - mt

Fresh - ni

Clear - mi

thoughts -pz/ma

in - ma/pz

17. Ans. C.

The code for 'bright and clear' - la pa mi

The codes are given below -

Intellectual - ga

bright - pa/la

and - la/pa

mind - dh

students - mt

Fresh - ni

Clear - mi

thoughts -pz/ma

in - ma/pz

18. Ans. A.

The code 'ni' stand for fresh

The codes are given below -

Intellectual - ga

bright - pa/la

and - la/pa

mind - dh

students - mt

Fresh - ni

Clear - mi

thoughts -pz/ma

in - ma/pz

19. Ans. D.

The code for 'thoughts' is either - pz/ma

The codes are given below -

Intellectual - ga

bright - pa/la

and - la/pa

mind - dh

students - mt

Fresh - ni

Clear - mi

thoughts -pz/ma

in - ma/pz

20. Ans. A.

The code 'ga' stand for - Intellectual

The codes are given below -

Intellectual - ga

bright - pa/la

and - la/pa

mind - dh

students - mt

Fresh - ni

Clear - mi

thoughts -pz/ma

in - ma/pz

21. Ans. B.

R bought car in August.

Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought

FREE TEST
IBPS RRB OFFICER SCALE I COMBO EXAM

car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	T
November(30)	
December(31)	

Case 2: If U bought car in November-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

22. Ans. D.

All the persons bought the car in a month which was having 31 days except P

Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons

bought cars between T and Q so Q bought car in July. P bought car one of the months before O so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	Т
November(30)	
December(31)	

Case 2: If U bought car in November-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

23. Ans. A.

Only one person bought car between ${\sf P}$ and ${\sf R}$.

Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	T
November(30)	
December(31)	

Case 2: If U bought car in November-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

24. Ans. E.

None is correct.

Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	T
November(30)	
December(31)	

Case 2: If U bought car in November-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

25. Ans. B.

2 persons bought car after Q.

Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Person
U
Q
T

Case 2: If U bought car in November-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

26. Ans. D.

Conclusion I is false

Conclusion II is false

27. Ans. D.

if neither Conclusion I nor II follows.

28. Ans. E.

29. Ans. A.

Only Conclusion I follows

30. Ans. E.

Some intelligent are doctor. So, All intelligent being doctors is a possibility.

31. Ans. C.

According to first clue, P is either facing inside or outside

Scenario I: P is facing outside

U sits immediate left of R which is not possible in this scenario.

FREE TEST
IBPS RRB OFFICER SCALE I COMBO EXAM

Scenario II: P is facing inside

Using the other clues, we get

32. Ans. D.

According to first clue, P is either facing inside or outside

Scenario I: P is facing outside

U sits immediate left of R which is not possible in this scenario. Scenario II: P is facing inside

Using the other clues, we get

33. Ans. D.

According to first clue, P is either facing inside or outside

Scenario I: P is facing outside

U sits immediate left of R which is not possible in this scenario.

Scenario II: P is facing inside

FREE TEST

IBPS RRB OFFICER SCALE I COMBO EXAM

Using the other clues, we get

34. Ans. B.

According to first clue, P is either facing inside or outside

Scenario I: P is facing outside

U sits immediate left of R which is not possible in this scenario.

Scenario II: P is facing inside

Using the other clues, we get

35. Ans. B.

According to first clue, P is either facing inside or outside

Scenario I: P is facing outside

U sits immediate left of R which is not possible in this scenario.

Scenario II: P is facing inside

Using the other clues, we get

36. Ans. C.

All the persons are at the end except B.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		M	
Row 2	D				

Case 1B:

Row 1	N		M	
Row 2		D		

Case 2A:

Row 1	M		N	
Row 2				D

Case 2B:

Row 1	M		N	
Row 2		D		

Take case 1A:

O is 2^{nd} to the right of Q. O is not neighbor of N. The one who is facing O is 2^{nd} to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	M	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	M	Q
Row 2	Е		D			F

Take case 2A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M it means 3 people are between them but from this

cannot be possible so this case gets rejected.

Row 1	0	M	Q	N	
Row 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	0	M	Q	P	N	R
Row 2	С	A	F	D	В	Е

37. Ans. D.

D is facing P.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		M	
Row 2	D				

Case 1B:

Row 1	N		M	
Row 2		D		

Case 2A:

Row 1	M		N	
Row 2				D

Case 2B:

Row 1	M		N	
Row 2		D		

Take case 1A:

O is 2^{nd} to the right of Q. O is not neighbor of N. The one who is facing O is 2^{nd} to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	M	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	M	Q
Row 2	Е		D			F

Take case 2A:

Row 1	0	M	Q	N	
Row 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	0	M	Q	P	N	R
Row 2	С	A	F	D	В	Е

38. Ans. D.

3 persons sit between O and N.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		M	
Row 2	D				

Case 1B:

Row 1	N		M	
Row 2		D		

Case 2A:

Row 1	M		N	
Row 2				D

Case 2B:

Row 1	M		N	
Row 2		D		

Take case 1A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	M	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	M	Q
Row 2	Е		D			F

Take case 2A:

Row 1	0	M	Q	N	
Row 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	0	M	Q	P	N	R
Row 2	С	A	F	D	В	Е

39. Ans. B.

R is 3^{rd} to the left of Q.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		M	
Row 2	D				

Case 1B:

Row 1	N		M	
Row 2		D		

Case 2A:

Row 1	M		N	
Row 2				D

Case 2B:

_					
	Row 1	M		N	
	Row 2		D		

Take case 1A:

O is 2^{nd} to the right of Q. O is not neighbor of N. The one who is facing O is 2^{nd} to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	M	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	M	Q
Row 2	Е		D			F

Take case 2A:

Row 1	0	M	Q	N	
Row 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	0	M	Q	P	N	R
Row 2	С	A	F	D	В	Е

40. Ans. C.

A and M are facing each other.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		M	
Row 2	D				

Case 1B:

Row 1	N		M	
Row 2		D		

Case 2A:

Row 1	M		N	
Row 2				D

Case 2B:

_					
	Row 1	M		N	
	Row 2		D		

Take case 1A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	M	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	M	Q
Row 2	Е		D			F

Take case 2A:

Row 1	0	M	Q	N	
Row 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	0	M	Q	P	N	R
Row 2	С	A	F	D	В	Е

Quantitative Aptitude Solutions

1. Ans. B.

1	21		ϵ		ϵ
- 1	ว เ	_	n4	=	6/

$$67 - 32 = 35$$

$$35 - 16 = 19$$

$$19 - 8 = 11$$

$$11 - 4 = 7$$

2. Ans. C.

$$25 + 3 = 28$$

$$28 - 6 = 22$$

$$22 + 9 = 31$$

$$31 - 12 = 19$$

$$19 + 15 = 34$$

3. Ans. A.

$$7 \times 0.5 + 1 = 4.5$$

$$4.5 \times 1 + 1.5 = 6$$

$$6 \times 1.5 + 2 = 11$$

$$11 \times 2 + 2.5 = 24.5$$

4. Ans. B.

$$1 + 3 = 4$$

$$4 + 5 = 9$$

$$9 + 9 = 18$$

$$18 + 17 = 35$$

Again we have to check here -

- 3 + 2 = 5
- 5 + 4 = 9
- 9 + 8 = 17

$$17 + 16 = 33$$

We will add 33 in 35 = 68

5. Ans. D.

$$3.5 \times 2 - 3 = 4$$

$$4 \times 3 - 4 = 8$$

$$8 \times 4 - 5 = 27$$

$$27 \times 5 - 6 = 129$$

$$129 \times 6 - 7 = 767$$

6. Ans. E.

$$2x^2 + 11x + 14 = 0$$

$$2x^2 + 4x + 7x + 14 = 0$$

$$2x(x+2) + 7(x+2) = 0$$

$$(x+2)(2x+7) = 0$$

i.e.
$$x = -2 \text{ or } -7/2$$

$$2y^2 + 13y + 21 = 0$$

$$2y^2 + 6y + 7y + 21 = 0$$

 $2y (y+3) + 7 (y+3) = 0$

$$(2y+7)(y+3) = 0$$

i.e.
$$y = -3 \text{ or } -7/2$$

Thus, Relationship cannot be established.

7. Ans. B.

$$x^2 - 9x + 20 = 0$$

$$x^2 - 5x - 4x - 20 = 0$$

(x-5) (x-4) = 0

i.e.
$$x = 4 \text{ or } 5$$

$$y^2 = 16$$

$$y = (16)1/2$$

$$y = 4 \text{ or } -4$$

Thus,
$$x >= y$$

8. Ans. C.

$$x^2 - 7x + 12 = 0$$

$$x^2 - 4x - 3x + 12 = 0$$

$$x(x-4) - 3(x-4) = 0$$

i.e.
$$x = 3 \text{ or } 4$$

$$y^2 - 11y + 30 = 0$$

$$y^2 - 5y - 6y + 30 = 0$$

$$y(y-5)-6(y-5)=0$$

i.e.
$$y = 5 \text{ or } 6$$

Thus,
$$y > x$$

9. Ans. C.

$$x^2 - 8x + 15 = 0$$

$$x^2 - 5x - 3x + 15 = 0$$

$$x(x-5) - 3(x-5) = 0$$

FREE TEST

IBPS RRB OFFICER SCALE I COMBO EXAM

i.e.
$$x = 5$$
 or 3
 $y^2 - 12y + 36 = 0$
 $y^2 - 6y - 6y + 36 = 0$
 $y (y-6) - 6 (y-6) = 0$
i.e. $y = 6$
Thus, $y > x$

- 10. Ans. E. $2x^2 + 9x + 7 = 0$ $2x^2 + 7x + 2x + 7 = 0$ x (2x+7) + 1 (2x+7) = 0i.e. x = -1 or -7/2 $y^2 + 4y + 4 = 0$ $y^2 + 2y + 2y + 4 = 0$ y (y+2) + 2 (y+2) = 0i.e. y = -2Thus, Relationship cannot be established
- between X & Y.

 11. Ans. A.

 Required Average =

 (3750+3000+2500+3750+3500)/5 = 3300
- 12. Ans. B.
 Total number of students (males and females together) in University P = (3000 + 3750) = 6750
 Total number of students (males and females together) in University R = 2500+4250 = 6750
 Ratio = 1:1
- 13. Ans. B. Required ratio = (3750 + 3000) : (4250 + 2750) = 27 : 28
- 14. Ans. D.

 Required percentage =

 [4000/(3750+3000+2500+3750+3500)]*100

 = (4000/16500)*100 = 24% (approx)
- 15. Ans. C. Required number = 2750 + 50% of 2750 + 3500 = 7625
- 16. Ans. A.

 Number of teachers in physics subject = 1800 $\times \frac{17}{100}$ = 306

 Number of female teachers in physics = 306× $\frac{2}{9}$

Number of male teachers in physics = 306 -

$$= 238$$

Number of teachers in chemistry subject = $\frac{23}{1800 \times 100}$ = 414

Required percentage = 414 = 57 % (approx).

17. Ans. B.
Number of teachers in Chemistry subject = $1800 \times 23\% = 414$ Number of teachers in English subject = $1800 \times 27\% = 486$

Number of teachers in Biology subject = $1800 \times 12\% = 216$

Required number = 414 + 486 + 216= 1116

- 18. Ans. B.
 Total number of teachers English and Physics
 = 486 + 306= 792
 Total number of teachers Mathematics and
 Biology = 234 + 216= 450
 Required difference = 792 450= 342
- 19. Ans. E. Number of teachers in Mathematics subject= $1800 \times 13\% = 234$ Number of teachers in Hindi subject = $1800 \times 8\% = 144$ Required ratio = 234 : 114 = 13 : 8
- 20. Ans. C.

 Number of increased Mathematics teachers = $234 + 234 \times 50\% = 351$ Number of decreased Hindi teachers = $144 144 \times 25\% = 108$ Required total number = 351 + 108= 459
- 21. Ans. A. Average number of students, who appeared for Physics from the year, 2011 to 2015 = (650 + 250 + 350 + 600 + 350)/5 = 440
- 22. Ans. D.

 Total number of students who appeared for Physics from 2013 to 2015 = (350 + 600 + 350) = 1300

 Total number of students, who appeared for Chemistry from 2011 to 2013 = (800 + 630 + 550) = 1980

 Required ratio = 1300 : 1980 = 65:99

IBPS RRB OFFICER SCALE I COMBO EXAM

23. Ans. B.

Students who did not pass in Physics in the year 2011 = 70/100 * 650 = 455Students who did not pass in Physics in the year 2015 = 30/100 * 350 = 105Average = (455 + 105)/2 = 280

24. Ans. D.

Total number of students, who passed in Chemistry in 2011 = 50/100 * 800 = 400 Total number of students who did not pass in Physics in 2015 = 30/100 * 350 = 105 Difference = 400 - 105 = 295

25. Ans. B.

Total number of students who did not pass Physics in 2013 = 50/100 * 350 = 175 Total number of students who did not pass Chemistry in 2013 = 80/100 * 550 = 440 Percentage = 175/440 * 100 = 39.77% = 40%

26. Ans. A.

Take nearest values $21.003 \times 39.998 - 209.91 = 126 \times ?$ $630 = 126 \times ?$? = 5 (approx)

27. Ans. C.

$$(\frac{47}{100} \times 1442 - \frac{36}{100} \times 1412) \div 63$$

= $(677.74 - 508.32) \div 63 = 169.42/63 = 2.689 = 3 \text{ (Approx)}$
Hence option C is correct

28. Ans. D

$$? = 2418.065 + 88 \div 14.2 \times 6$$

$$? = 2418.065 + 88 \times \frac{1}{14.2} \times 6$$

 $? = 2418.065 + 6.197 \times 6$

- ? = 2418.065 + 37.18
- ? = 2455.25

? = 2455 (Approx.)

29. Ans. E.

 $1200 \div 15 \times 20 + 400 = 80 \times 20 + 400$ = 1600 + 400 = 2000 (Approx) Hence option E is correct

30. Ans. E.

$$? = 726 \times \frac{15.2}{100} \times 643 \times \frac{12.8}{100}$$

 $= 110.352 \times 82.304$

= 9082.41

≈ 9082 (approx)

31. Ans. A.

Third Number =
$$(128 \times 5)$$
 - (118×2) - (126×2) = 152

32. Ans. A.

Let present age of Anita= 'x' years And present age of Bablu= 'y' years

Now,
$$\frac{\frac{x-4}{2}}{4(y-4)} = 5/12$$

 $12x - 48 = 40y - 160$
 $3x - 10y + 28 = 0$ (i)

And,

$$\frac{1}{2}(x+8) = (y+8)-2$$

$$x+8 = 2y+12$$

$$x-2y=4$$
(ii)

Now, from eqn. (i) & (ii) Bablu present age, Y=10 years

33. Ans. B.

Let 100 (CP)

80 (SP) 110 (SP)

Diff. 30

30 units \rightarrow 24

1 unit \rightarrow 30

100 units
$$\rightarrow \frac{24}{30} \times 100 = \text{Rs. } 80$$

CP = Rs. 80

34. Ans. A.

A started a business with investing Rs. 8000 and after some months, B joined with investing Rs. 5000.

Equivalent capital of A

= Rs. 8000 × 12

= Rs. 96000

Let B joined after x months.

So, equivalent capital of B

 $= Rs. 5000 \times (12 - x)$

= Rs. 60000 - 5000x

Total profit after one year = Rs. 4250

Share of A = Rs. 3000. Then, the share of B =

Rs. 4250 - 3000 = Rs. 1250

So, the ratio of their share;

A : B = 3000 : 1250 = 12 : 5

Now, we can write,

96000/(60000 - 5000x) = 12/5

 \Rightarrow 60000 - 5000x = 96000 × (5/12)

 \Rightarrow 60000 - 5000x = 8000 × 5

 $\Rightarrow 5000x = 60000 - 40000$

 $\Rightarrow x = 20000/5000 \Rightarrow x = 4$

: After 4 months, B joined in the business.

FREE TEST

IBPS RRB OFFICER SCALE I COMBO EXAM

35. Ans. D.

Let the length of train P and Q are 5a and 4a. speed of train P = 5a/6

therefore,

(5a/6 + 21)*4 = 5a/3 + 4a

$$-5a/3 + 4a = 84$$

a = 36

speed of train P = 36*5/6 = 30m/s

36. Ans. D.

Total no of balls = 8 + 7 + 6 = 21

Let, E be the event where the ball can be selected which is neither yellow nor black Number of events where the ball can be selected which is neither yellow nor black = $7 \cdot P(E) = 7/21 = 1/3$

37. Ans. D.

Ratio of days of B and C = 2:1

$$\frac{1}{A} + \frac{1}{B} = \frac{1}{60} \dots 1$$

$$\frac{1}{A} + \frac{1}{C} = \frac{1}{45} \dots 2$$

$$\frac{1}{A} + \frac{2}{B} = \frac{1}{45} \dots 35$$

1) and 2)

$$\frac{1}{B} = \frac{1}{180} \Rightarrow B = 180 \, days$$

From equation 1) A = 90 days, and C = 90 days

One day work of A, B and C

$$= \frac{1}{90} + \frac{1}{90} + \frac{1}{180} = \frac{2+2+1}{180} = \frac{1}{36}$$

Days = 36 days.

38. Ans. B.

First and second varieties of pulses are mixed in equal proportions

:. Their average price = INR (32+45)/2 = INR 38.5/kq

Let the price of third variety pulse be INR x/kg

The mixture is formed by mixing two varieties becomes one at INR 38.5/kg

By the rule of allegation:

Cost of 1 kg of 3rd variety

Mean price INR 88

$$\frac{x-88}{495} = \frac{1}{1}$$

49.5

$$\Rightarrow$$
 x - 88 = 49.50 \Rightarrow x = 137.50

Hence, the price of the third variety per kg will be INR 137.50/kg

39. Ans. D.

The time required to travel a certain distance upstream is five times than that of

downstream for the same distance.

Let the speed of the boat in upstream be $x + \frac{1}{2} x + \frac{1}{2}$

We know that if the speed of the downstream is x km/hr and the speed of the upstream is y km/hr, then the speed in still water = $1/2 \times (x + y) \text{ km/hr}$.

So, the speed of the boat in still water

- $= 1/2 \times (x + 5x) \text{ km/hr}.$
- $= 1/2 \times 6x \text{ km/hr}.$
- = 3x km/hr.

Given, the speed of a boat in still water is (27/4) km/hr.

So, we can write now,

$$3x = 27/4$$

$$\Rightarrow x = 9/4$$

So, the speed of the boat in upstream = 9/4 km/hr.

And the speed of the boat in downstream = $5 \times (9/4) \text{ km/hr.} = 45/4 \text{ km/hr.}$

Again, we know that if the speed of the downstream is x km/hr and the speed of the upstream is y km/hr, then the speed of the stream = $1/2 \times (x - y) \text{ km/hr}$.

- \therefore The speed of the stream = $1/2 \times [(45/4) (9/4)]$ km/hr.
- $= 1/2 \times 9 \text{ km/hr}.$
- = 9/2 km/hr.
- = 4.5 km/hr.
- 40. Ans. C.

Curved Surface Area of Cylinder = $2\pi rh$ Total Surface Area of Cylinder = $2\pi r (h+r)$ According to question, $2\pi rh : 2\pi r (h+r) = 3:5$

i.e.
$$h/(h+r) = 3/5$$

i.e.,
$$2h = 3r - (a)$$

Also, Curved surface area of the cylinder = 1848 metre square

i.e.
$$2\pi rh = 1848$$

From (a), $2\pi (2/3h) * h = 1848$

On solving the above equation, h = 21m